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ON THE EXTREME SIZES OF GRAPHS WITH A

GIVEN PARTIAL ORDER COMPETITION DIMENSION

Jihoon Choi

Abstract. Most previous research on the partial order competi-
tion dimension has focused on computing the dimension of a given
graph. In this paper, we take a new approach by considering graphs
with a fixed partial order competition dimension and investigating
the extremal numbers of edges and vertices that such graphs can
have.

1. Introduction

The notion of the partial order competition dimension was introduced
by Choi et al. in [1] during their study of the structure of competition
graphs derived from d-partial orders. The competition graph of a digraph
D, which is denoted by C(D), is defined to be a graph having the same
vertex set as D and having an edge uv if and only if u and v have a
common out-neighbor in D. For an integer d ≥ 0, a d-partial order is a
digraph D = (V,A) such that V ⊂ Rd and (u, v) ∈ A if and only if u is
less than v componentwise. The authors in [1] introduced the notion of
partial order competition dimension as follows:

Definition 1.1. Let G be a graph. If we add some additional iso-
lated vertices to G, it can become the competition graph of a d-partial
order for some integer d ≥ 0. The smallest such d is called the partial
order competition dimension (poc dimension for short) of G, denoted by
dimpoc(G)

Most previous research has focused on computing the poc dimension
of a given graph. See [1], [2], [3], and [4] for some examples. In this paper,
we take a new approach by considering graphs with a fixed partial order
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competition dimension and investigating the extremal numbers of edges
and vertices they can have.

2. Main theorem

For a nonnegative integer d, let Gd be the family of graphs G with
dimpoc(G) = d. We introduce some parameters as follows:

vpoc(d) = min{|V (G)| : G ∈ Gd},
epoc(d;n) = max{|E(G)| : G ∈ Gd, |V (G)| = n},
epoc(d;n) = min{|E(G)| : G ∈ Gd, |V (G)| = n}.

These parameters represent the extremal numbers of vertices and edges
for graphs in Gd. Note that the parameter vpoc(d) = max{|V (G)| :
G ∈ Gd} is undefined, as graphs in Gd can have an arbitrary number of
vertices by adding isolated vertices at will. In fact, [1] showed that a
graph G has dimpoc(G) = 2 if and only if it is an interval graph that is
neither Ks nor Kt∪K1 for any positive integers s and t. Thus, the value
vpoc(2) is attained by the edgeless graph I3 on three vertices. Hence,
vpoc(2) = |V (I3)| = 3 and epoc(2; 3) = |E(I3)| = 0.

The goal of this paper is to investigate epoc(d;n) and epoc(d;n). We
compute them for the first few values of d as follows:

Theorem 2.1. For d ∈ {1, 2, 3}, epoc(d;n) and epoc(d;n) satisfy the
following:

(1) When n ≥ 2, we have epoc(1;n) =
(
n−1
2

)
and epoc(1;n) =

(
n
2

)
.

(2) When n ≥ 3, we have epoc(2;n) = 0 and epoc(2;n) =
(
n
2

)
− 1.

(3) When n ≥ 4, we have epoc(3;n) = 4 and epoc(3;n) =
(
n
2

)
− 2.

Proof. Case 1. According to the results of Choi et al. ([1]), a graph
G has dimpoc(G) = 1 if and only if G is either Kt+1 or Kt∪K1 for some
positive integer t. Therefore, for an integer n ≥ 2, the graphs G ∈ G1

with |V (G)| = n must be equal to either Kn or Kn−1 ∪ K1. Thus,

epoc(1;n) = |E(Kn−1 ∪K1)| =
(
n−1
2

)
and epoc(1;n) = |E(Kn)| =

(
n
2

)
.

Case 2. As we mentioned earlier, a graph has dimpoc(G) = 2 if
and only if G is an interval graph that is neither Ks nor Kt ∪ K1 for
any positive integers s and t. Therefore, epoc(2;n) and epoc(2;n) are
attained by the edgeless graph In and the complete graph Kn minus one
edge, respectively. Hence epoc(2;n) = 0 and epoc(2;n) =

(
n
2

)
− 1.

Case 3. To compute epoc(3;n), we shall try to delete edges from Kn

as few as possible to obtain a graph G with dimpoc(G) = 3. First we
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remove an edge e1 = {a, b} from Kn. This does not yield the desired
graph, as shown in Case 2. Then we delete another edge e2 = {c, d}.
Since n ≥ 4, we can select e2 so that it is not adjacent to e1. Then the
four vertices a, b, c, d form an induce cycle of length 4 in Kn − e1 − e2,
which implies that Kn − e1 − e2 is not an interval graph. Therefore
dimpoc(Kn−e1−e2) ≥ 3. Moreover, Kn−e1−e2 can be viewed as a graph
obtained from C4 = abcda by sequentially adding universal vertices,
each of which is adjacent to all other vertices. Since dimpoc(C4) = 3
and adding universal vertices does not increase the poc dimension, we
have dimpoc(Kn − e1 − e2) = 3. Hence epoc(3;n) = |E(Kn − e1 − e2)| =(
n
2

)
− 2. We observe that C4 is the smallest graph in G3 and that adding

isolated vertices to C4 does not change the poc dimension. Therefore,
epoc(3;n) = |E(C4 ∪ In−4)| = 4.

We note that the condition n ≥ 4 is necessary for epoc(3;n) and
epoc(3;n) because no graph G with dimpoc(G) = 3 can have fewer than
four vertices. In fact, the process outlined in the proof of Theorem 2.1
can be continued to compute epoc(4;n), epoc(4;n), epoc(5;n), epoc(5;n),
and beyond. Then we might expect all the values of epoc(d;n) to take

the form
(
n
2

)
− f(d) for some function f : N → N where N denotes the

set of positive integers. However, rather than repeating the process of
computing epoc(d;n) for each individual d ≥ 4, we distill the key idea,
which is summarized as follows:

Theorem 2.2. Let d be a nonnegative integer. For each n ≥ vpoc(d),

epoc(d;n) ≥
(
n

2

)
− |E(G)|

whereG is a graph that attains epoc(d; vpoc(d)), andG is the complement
of G.

Proof. By the hypothesis, G is a graph such that dimpoc(G) = d,
|V (G)| = vpoc(d), and |E(G)| = epoc(d; vpoc(d)). Let H be a graph
obtained from G by sequentially attaching n− vpoc(d) universal vertices
toG. By the construction,H consists of n vertices and satisfies |E(H)| =(
n
2

)
− |E(G)|. Moreover, dimpoc(H) = dimpoc(G) = d because adding

universal vertices does not affect the poc dimension. Thus, we have
epoc(d;n) ≥ |E(H)| =

(
n
2

)
− |E(G)|, which completes the proof.

Remark 2.3. To illustrate Theorem 2.2, consider the case where
n = 4. Among the graphs G ∈ G4, the one with the fewest vertices and
edges is the complete bipartite graph K3,3 (see [3]). Therefore, we have
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vpoc(4) = 6 and epoc(4; 6) = 9. Hence, for n ≥ 6 = vpoc(4), we have

epoc(4;n) ≥
(
n
2

)
− |E(K3,3)| =

(
n
2

)
− 6. From the proof of Theorem 2.2,

we know that it is possible to delete six properly selected edges from
Kn to obtain a graph G ∈ G4 with |V (G)| = n. This naturally leads to
the question of whether it is possible to construct a graph G ∈ G4 with
|V (G)| = n by deleting fewer than six edges from Kn.
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